pymech.dataset#
Interface for reading files as xarray datasets.
Installing pymech
also registers as a xarray
backend. This means
in addition to pymech.dataset.open_dataset()
, a file can be directly opened via
xarray.open_dataset()
as follows:
>>> import xarray as xr
>>> xr.open_dataset("case0.f00001") # let xarray choose the backend / engine
>>> xr.open_dataset("case0.f00001", engine="pymech") # or explicitly mention the *engine*
See also
The backend API of xarray
and the implementation PymechXarrayBackend
(Internals)
The module also provides pymech.dataset.open_mfdataset()
to open multiple
files and merge into a single dataset. This is a wrapper around
xarray.open_mfdataset()
, with sane defaults such as merge along time
dimension and combine using xarray.combine_nested()
.
Contents of dataset.py#
- pymech.dataset.open_dataset(path, **kwargs)[source]#
Helper function for opening a file as an
xarray.Dataset
.
- pymech.dataset.open_mfdataset(paths: str | NestedSequence[str | os.PathLike], chunks: T_Chunks = None, *, concat_dim: str | DataArray | Index | Sequence[str] | Sequence[DataArray] | Sequence[Index] | None = 'time', compat: CompatOptions = 'no_conflicts', preprocess: Callable[[Dataset], Dataset] | None = None, engine: T_Engine = 'pymech', data_vars: Literal['all', 'minimal', 'different'] | list[str] = 'all', coords='different', combine: Literal['by_coords', 'nested'] = 'nested', parallel: bool = False, join: JoinOptions = 'outer', attrs_file: str | os.PathLike | None = None, combine_attrs: CombineAttrsOptions = 'override', **kwargs) Dataset #
Helper function for opening multiple files as an
xarray.Dataset
. Seexarray.open_mfdataset()
for documentation on parameters.
Note
See usage for more details.